

高純度有色金屬蒸發料

公司簡介

專營項目:

高純度有色金屬蒸發料、 鉭與鉭鎢合金壓力加工製品

- ✓穩定可靠的產品: 具科研背景與實務經驗的團隊 數十年科研實務積累 提供專精生產品項
- ✓客製化的開發服務: 具熔煉提純→終端產品之製程 具資源整合與檢測能力 協助長期合作客戶新材料開發服務

設備與產能

• 設備:

600瓩電子束熔煉爐 3000噸鍛壓設備 400噸軋板機 多型棒材精鍛機 高溫真空退火爐

• 高純度有色金屬產能

顆粒與錠:30公噸/年。

Cr破碎粒:6公頓/年。

產品介紹(材質、形狀)

用途(熱蒸鍍、電子束蒸鍍)

高純有色金屬蒸鍍顆粒應用(鋁銅合金顆粒)

電遷移抵抗

- 當少量的銅與鋁形成合金,鋁的電遷移阻 抗會被顯著地改善
- 銅扮演鋁晶粒間的黏著劑且保護他們避 免遷移而造成離子轟擊
- 鋁矽銅合金被使用
- 鋁銅 (0.5%)合金最常被使用

擷自網路,僅供參考

獨家開發 -新穎鋁銅合金蒸發料

- ✓ 獨家生產高含銅量之鋁銅合 金蒸發料。
- ✓ 應用於高頻、高功率半導體 元件之金屬薄膜電極蒸鍍, 例如表面聲波濾波器。
- ✓ 已有導入終端消費性電子通 訊產品實績。

- 與純鋁陰極元件相比,含銅量4wt%,壽命可從75hr提升至263hr
- 在1,000 cd/m²,含銅量4wt%,效率可提升31%,從32lm/W提升至42lm/W
- 含銅量增加,可抑制通電子遷移導致尖刺產生以及更光滑的鋁界面

經過7V通電15分鐘後的表面型態

TEI	影響量化%		
項目	電極含2%銅	電極含4%銅	
壽命	+105	+250	
效率	+31	+31	
表面平整度	+48	+53	
抑制電子遷移	+27	+44	
Work function	+7	+10	
片電阻	-3	-17	
反射率	-3	-4	

www.acsami.org

Minor Copper-Doped Aluminum Alloy Enabling Long-Lifetime Organic Light-Emitting Diodes

Yun-Jie Lin, Chia-Sheng Huang, Pei-Chung Tsai, Yu-Lun Hsiao, Cheng-Yu Chen, and Jwo-Huei Jou

Cite This: ACS Appl. Mater. Interfaces 2022, 14, 55898-55904

ACCESS

III Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Aluminum has been extensively used as a conductor material in numerous electronic devices, including solar cells, light-emitting diodes (LEDs), organic LEDs (OLEDs), and thin-film transistors. However, its spiking surface and easy electromigration have limited its performance. To overcome this, a trace amount of nonprecious copper dopant has been proven effective in enhancing device reliability. Nevertheless, a comprehensive investigation regarding the effect of copper doping on the morphology at the aluminum conductor—organic interface is yet to be done. We had hence fabricated a series of green OLED devices to probe how copper doping affected the aluminum conductor, morphologically and electrically, and the corresponding device's efficiency and lifetime performance. We found 4 wt % copper doping to be highly effective in enabling a spike-less and smoother aluminum interface, which in turn enabled the fabrication of devices with much higher efficiency and lifetime. Specifically, the corresponding power efficacy at 1000 cd/m² was increased from 32 to 42 lm/W and

the lifetime increased from 75 to 263 h, an increment of 250%. Atomic force microscopy confirmed that the copper doping did help smooth out the conductor interface as deposited and reduce electromigration upon operation.

KEYWORDS: minor copper-doped aluminum cathode, spike-less, electromigration, lifetime, efficiency, OLED

www.acsami.org

Research Article

effect of tribution tion was for the s, highest occupied electron

ode work emissive m 5.2 × action is the work ed as 4% Yu-Lun Hsiao – Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013 Taiwan, ROC

Complete contact information is available at: https://pubs.acs.org/10.1021/acsami.2c18275

Author Contributions

§Y.-J.L. and C.-S.H. contributed equally to this paper

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the cooperation of Prof. Cheng-Yu Chen (Department of Chemical Engineering, Ming Chi University of Technology) in providing the studied copper-doped aluminum alloy pellets.

of green

合作項目 -高純度有色金屬蒸發顆粒

材質	純度	尺寸(mm)
Ni	4N5, 5N	D3x3, D3x6, D6x6, 10x10x2, 10x5x2
Ti	4N5, 5N	D3x3, D3x6, D6x6, 10x10x2, 10x5x2
Cr	3N5	1~3(piece)
Al	5N, 5N5, 6N	D3x3, D3x6, D6x6
Al2Cu, AlxCu(x>8)	5N	D3x3, D3x6, D6x6
Та	4N5	>D3
Cu	6N	D3×4.5

p.s. 可客製化>D3 尺寸顆粒